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Lyapunov exponents and coalescence of chaotic trajectories
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Identical nonlinear chaotic systems linked by a common noise {@msigna) may synchronize. The
synchronization process, which is a combined effect of the noise and of the deterministic part of the map, could
show much more complex behavior than the one suggested by recent studies. In particular, it is demonstrated
that when the noise couples the states of an ensemble of identical systems the change of sign of the largest
Lyapunov exponent of the ensemble is not necessarily connected with the synchronization.
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Time evolution of nonlinear deterministic systems may One may wonder as to whether synchronized trajectories
exhibit extreme sensitivity to initial conditions, also referred can be distinguished from nonsynchronized ones by studying
to as chaotic behavidr]. In practice it means that the ob- the sign of the maximal Lyapunov exponent. Such correla-
served trajectories display a random character making longion was suggested by Pikovsky and Kaulakys, Ivanauskas,
time evolution of the systems unpredictalle]. Conse- and Meskauskals3,6] and by the PF models where synchro-
quently, identical chaotic systems that start their evolutiorization took place when the largest Lyapunov exponent be-
from different initial points in phase space are not expecte§@me negative. Indeed, for the identical one-dimensional

to synchronize, and adding random noise should make thefghaotic systems subject to random forces generated indepen-
even “more random.” dently of the states of the systefi&s3], the change of sign of

Recently, a number of counterintuitive examples to thethe largest Lyapunov exponent from positive to negative val-

above expectations has been folige6]. Namely, these pa- ues implied going from a nonsynchronized to a synchronized

pers have demonstrated that copies of a chaotic system, earEerglme. In the cases studied by Pikovyl] the Iarges.t
. . L o . yapunov exponent of the ensemble was found by studying a
evolving with different initial conditions, may synchronize

. ) . single subsysterf3].
under an identical sequence of a signal or a random force. A purpose of this paper is to show that the lack of syn-

That is, if we take a chaotic map and start numerical eVOIu'chronization does not necessary imply that the maximal

tion of two arbitrarily _chosen initial _points_ subj(_ect to_ the Lyapunov exponent must be positive. For the logistic map,
same sequence of noise, thg resulting traje.ct_orles will colyyhen the noise couples with the states of the syst@®msn
!apse_ to a single random trajectory after a finite number ofhe case of Maritan and Banavar mod&IB) [4]) the tech-
iterations. nique proposed by PikovsK] does not apply and the dif-

In our recent papel7] we showed that the observation of ference between ensembles with positive and negative
coalescence should be atributed to finite precision of the cakyapunov exponents becomes nontrival. We demonstrate
culations. Strictly speaking, in the majority of the cases studihat in this case the Lyapunov exponents are not the most
ied in the literature the average coalescence time is eitharseful characterization of the synchronization process. The
linear or an exponential function of precision and, statisti-situation resembles the complexity of dynamics observed for
cally, coalescence never occurs when precision is infinitechaotic maps subject to a random perturbaf®inIndeed, as
The linear case, studied by Pecora and Carroll and Fahy arwle shall prove, the models of collapse studied by MB belong
Hamann[2] (PP differs, however, from the exponential one to this category.
of Maritan and Banaval4]. Namely, most of the processes  In order to clarify a relation between the coalescence and
with the average coalescence time being a linear function dhe Lyapunov exponents we shall consider a generalization
precision cause the average distance between the random tef-the MB model. They studied chaotic logistic mg{s9—
jectories to converge to zero with the number of iterations. 1tL3] coupled by an external noise
is this case by which, here and in the rest of this paper, we
mean the coalescenésynchronizatioh of random trajecto- X'=4x(1-x)+Wp,
ries. More specificallywe shall consider random trajecto-
ries as synchronized (collapsed) if the corresponding aver- y'=4y(l-y)+Wn,
age distance between them, converges to zero with time.

where 0=x,y<1; 5 is a(common for both subsystemsman-

dom number chosen uniformly from the intenvall to +1

*Also at Departamento de’$ica, Universidade de Brdis, DF, andW=>0 is the strength of the noise. The valuesyofio-
Brazil. lating the bounds &x’,y’<1 is discarded and a new is

@
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FIG. 1. Lyapunov exponents as functionsWffor the W—Q, FIG. 2. Lyapunov exponents as functionsefor the W—Q,
process. process with fixedV.

chosen. Though this model does not show synchronizatio g\_fstudy of ﬂ;]e pﬂg\r/lor?)ena of synchronléatlon_ IS s_|mpl|-
[7] it provides a simple example of the noise induced cou-'€d I We note that the/—{), processes can be written in an

pling between the initially uncorrelated systenW=0). A equivalent form as

straightforward generalization of the procé$s allows one X' =Xu(X,y)+ 7W(X,y,W),

to study the coalescence process in a more detailed way. In

order to introduce the generalized model let us note that cha- Y =Yu(X,y)+ 7W(X,y,W), 3)
otic maps have iterations that are composed of two parts, one

which stretches the distance between the points and another X=4x(1-x), y=4y(1-vy).

where the distance is enlarged. Consider the distance fun

tion d, between images of andy for process(1) ?—|ere1; is an independent random variable, extraciedach

time stepwith uniform distribution on the intervgl—1,1]

2 (and without constrains The functionsXy,, Yy, and W

d :Sa (X,y)—4|x—y|[1—(x+Yy)], read (W= 1(1— e/d))

where S=[0,1]X[0,1]. Then the distance contracting area T+B ~ _  _ T-B
Q,, of map (1) is given by the condition:{(x,y): Xu=—7%" Yu=Xuty—x, W=—— (4
3/4<x+y<5/4NS. That is, V (xy)eQq: di(xy)
<|x—y]|. Clearly, for points inS but outside(), the distance where
between the points is either enlarged or left unchanged. 1
Let us now introduce such a generalization of the random  T= min| 1,1-(y=X),=
chaotic map(1) that allows us tocontrol the values of 2
d;(x,y). For that purpose let the stategy) be restricted to 1
an area (), C S, given by the inequality *e/4 B=max[0,—(y—'>?),—
sx+y=<1+e€/4. In particular,Q),=S. Suppose the evolu- 2
tion proceeds, as previously, according to EL), but with
(x",y") e Q.. This condition is realized in practice by an
appropriate choice of the noise term. Namely, agaiis a
(common for both subsystemsandom number chosen uni-
formly from the interval—1 to +1. In order to guarantee

X+W (5

AR
tam(y=x)

e ~ o~
1-5-G-%

,’i—w]. (6)

The largest Lyapunov exponeit) for process(3) is
found in a standard way by calculating the Jacohklamat a
time i and by using the relation

that the noise transfers all points frotto ), we require (I)=lim iIn|JKJK,1~ 35310
that W> 3(1— e/4). KoK
The values ofy yielding (x',y’) from outside(), are 1
discarded and a new is chosen. That is, the noise term = lim — (Injok| +Injog_4| + - - - +In|vy)), 7)
“shuts” the points 0<4x(1—x),4y(1—-y)<1 (obtained K—oo

from the previous iterationinto ),. We shall call this pro-

cess W—Q,. Clearly, for the whole process where v, is an arbitrary two-dimensional vector of unit
di(x,y)<e|x—y| and fore=4 we recover the model pro- |ength (vo|=1) and where

posed by MB. One of the interesting features of the general-

ized model is that foe<1 (W> 3(1—e/4)) it always con- ~ o~ Y

tracts the distance between the points so it certainly yields a visal=13ia0il 0= loi|” 8)
collapse of the trajectories. Actually, as we demonstrate, the

collapse takes place for a much larger set of parameters. F&esults are shown in Figs. 1 and 2. Note that for the
example, when W=1 the collapse is observed for W— (), process there is no correlation between the change of
e<2.717. The regiones2.717 areseparated by a paramet- sign of(l) and the collapse. Consider, for example, two spe-
ric second order phase transition, where the average coalesial cases:(a) the original MB process withe=4 and
cence time as function of precision changes from algebraic to<W=1 and (b) the W—Q, process withW=1. For the
exponential dependency. The averaged distande> plays  MB process the collapse does not take plg€ebut, none-
the role of anorder parameter thelessl) changes sign as a function @. On the other
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FIG. 3. Pair distribution function for th&/—, process and for various paramet&s (a) W=0.01, (b) W=0.1, (c) W=0.4, (d)
W=0.7, and(e) W=1.

hand, for theW— (), process the largest Lyapunov exponentwhere

is always negative although collapse takes place only for

e~2.717.For e>2.717the collapse does not occur in spite _ - -

of fact that the Lyapunov exponent is negative. Tn=0(Ym— Xm0
In order to identify relevant factors responsible for the

e ~ ~
Z_1+Ym_xm

value of the maximal Lyapunov exponent, we have calcu- 1 e - -~ e ~ ~
lated (1) for cases(@) and(b) by a direct diagonalization of 501 1= 7 FYm Xm|O| 1= 7 =Yt X |,
the productlcJx_;- - -J,J;. For these particular cases this
diagonalization can be done exactly, yielding (10)
1( XK - - o~ e - o~
(1y=lim R{ > Inj4—8y,+4(Yn—X)[Tno1+Bn_1 Bm=®(xm—ym)®(z—l—ym+ Xm
K —s o0 n=1

1 e ~ -
+—®(l—Z—ym+ xm)®

e - ~
~ ~ 1-—-— - 11
+77n1(Tn1_Bn1)]|Ja 9 2 4+ym Xm) A
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FIG. 6. The distance functiofd,)=(|x—y|) for the W—Q,
process withW=1. It shows a parametric phase transition for
e~2.717.

FIG. 4. The distribution functioP(N) that N digits of x and
y are identical N=|In10(x—y|)|). Calculations are carried out for
the W—Q, process withiW=1.

. - . ~ correlates subsystems. These correlations are already seen
and where® is the ¢ Heaviside. AdditionallyTo=Tx and {5 \w=0.1 in the form of a shallow local maximum along
Bo=By . Note that Eq(9) depends only on the properties of the x=y line and become fully developed fow=0.4.
the pair distribution functiorP(x,y). This follows from the  Hence, the noise term correlates subsystems and the sign of
observation thaix, andy, can be expressed in terms of {l) is determined by details d?(x,y). Neither very strong
Xn-1, Yn_1, and 7,_,. Furthermore, the averaging over the correlations[ P(x,y) = 6(x—y), where§ is the Dirac func-
independent uniformly distributed random numbeys_,  tion] nor lack of correlationg P(x,y)=P(x)P(y)] would
can be done separately. F&¢=1 and fore=4 the final yield negative values ofl). The fine structure of the pair
formulas becomes particularly simple. It reads correlations, giving a probability distribution that the two
trajectories haveN common digits, is shown in Fig. 4. We
1 clearly see that folW=1 no collapse occurs.
(N=In(4)=1+ lim RZ In[1—8/Xy=Ynl[1=Xa—Yall, From the analysis above it seems that Lyapunov expo-
Kot nents do not provide the most general characterization of the
(12) collapse processes and some other quantities should be
171 looked for. The most natural and almost trivial one is the
:|n(4)_1+f f dxdy P(x,y) distance function
0oJo

K
XIn|1—8|x—y||1-x—y]|. (13) (d))= lim %2 S mya? (14
n=1 «a ' '

From Eq.(13) it becomes clear that the sign of the maxi- K=
mal Lyapunov exponent for the MB process depends on d
tails of pair correlationsandeven for trajectories that do not
collapse it can be negativelTo see this explicitely we

K

e\?\/herexa andy, are the components of a multidimensional
vectorsx andy describing a chaotic, random process. For the
P ; ! : W-— Q. processes this function has been shown in Figs. 5
sketched in Fig. 3 the evolution of the pair correlation func and 6. Note that théd,) serves, in this case, as an order

tion P_(x,y) W'th. mcreasmgw. This funct|_0n fulf|II§ a sto- Parameter, i.e., it vanishes for infinite times in the collapse
chastic Frebonius-Peron integral equation, similar to tha . .
area and is nonzero otherwise. For tié— . process

given in[8], and can easily be generated numerically. Note,,, o
that theW— (), process for smaW's is practically equiva- (ev:\/; 1()e Vlez 70;)75)(3 ?r/c?maa ﬁgﬁzgﬁa osr:jner rghierlr?: }t;a)nil)tlgn at
lent to the dynamics of the two decoupled logistic maps. oIIaC s'ri 6ne ¢<e.). Close tg tr?e ghase tcrans't'on
Also, the corresponding Lyapunov exponent is similar to that®'aPsIng ¢ P "

L B : . {x—y|) ~(e—e.)?, whereg is a critical exponent. The
known for the logistic map. With increasing/ the noise estimates gived=1-0.25. Both.e, and 8 are very hard to

get. They were found with the help of a program running
under control of themaPLE package. Averages were per-
formed over 10 time steps with an adaptive precision
scheme which guaranteed that statistically no collapse took
place within the first 1Dtime steps. Close te. a relative
precision of 1536 digits was necessary to fulfill this condi-
tion. But still the data are characterized by a large scatter
making direct estimates @ extremely difficult.
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