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Lyapunov exponents and coalescence of chaotic trajectories
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Identical nonlinear chaotic systems linked by a common noise term~or signal! may synchronize. The
synchronization process, which is a combined effect of the noise and of the deterministic part of the map, could
show much more complex behavior than the one suggested by recent studies. In particular, it is demonstrated
that when the noise couples the states of an ensemble of identical systems the change of sign of the largest
Lyapunov exponent of the ensemble is not necessarily connected with the synchronization.
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Time evolution of nonlinear deterministic systems m
exhibit extreme sensitivity to initial conditions, also referr
to as chaotic behavior@1#. In practice it means that the ob
served trajectories display a random character making lo
time evolution of the systems unpredictable@1#. Conse-
quently, identical chaotic systems that start their evolut
from different initial points in phase space are not expec
to synchronize, and adding random noise should make t
even ‘‘more random.’’

Recently, a number of counterintuitive examples to
above expectations has been found@2–6#. Namely, these pa
pers have demonstrated that copies of a chaotic system,
evolving with different initial conditions, may synchronize
under an identical sequence of a signal or a random fo
That is, if we take a chaotic map and start numerical evo
tion of two arbitrarily chosen initial points subject to th
same sequence of noise, the resulting trajectories will
lapse to a single random trajectory after a finite number
iterations.

In our recent paper@7# we showed that the observation
coalescence should be atributed to finite precision of the
culations. Strictly speaking, in the majority of the cases st
ied in the literature the average coalescence time is ei
linear or an exponential function of precision and, statis
cally, coalescence never occurs when precision is infin
The linear case, studied by Pecora and Carroll and Fahy
Hamann@2# ~PF! differs, however, from the exponential on
of Maritan and Banavar@4#. Namely, most of the processe
with the average coalescence time being a linear functio
precision cause the average distance between the random
jectories to converge to zero with the number of iterations
is this case by which, here and in the rest of this paper,
mean the coalescence~synchronization! of random trajecto-
ries. More specifically,we shall consider random trajecto
ries as synchronized (collapsed) if the corresponding av
age distance between them, converges to zero with time

*Also at Departamento de Fı´sica, Universidade de Brası´lia, DF,
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One may wonder as to whether synchronized trajecto
can be distinguished from nonsynchronized ones by study
the sign of the maximal Lyapunov exponent. Such corre
tion was suggested by Pikovsky and Kaulakys, Ivanaus
and Meskauskas@3,6# and by the PF models where synchr
nization took place when the largest Lyapunov exponent
came negative. Indeed, for the identical one-dimensio
chaotic systems subject to random forces generated inde
dently of the states of the systems@2,3#, the change of sign of
the largest Lyapunov exponent from positive to negative v
ues implied going from a nonsynchronized to a synchroni
regime. In the cases studied by Pikovski@3# the largest
Lyapunov exponent of the ensemble was found by studyin
single subsystem@3#.

A purpose of this paper is to show that the lack of sy
chronization does not necessary imply that the maxim
Lyapunov exponent must be positive. For the logistic m
when the noise couples with the states of the systems~as in
the case of Maritan and Banavar model~MB! @4#! the tech-
nique proposed by Pikovsky@3# does not apply and the dif
ference between ensembles with positive and nega
Lyapunov exponents becomes nontrival. We demonst
that in this case the Lyapunov exponents are not the m
useful characterization of the synchronization process.
situation resembles the complexity of dynamics observed
chaotic maps subject to a random perturbation@8#. Indeed, as
we shall prove, the models of collapse studied by MB belo
to this category.

In order to clarify a relation between the coalescence
the Lyapunov exponents we shall consider a generaliza
of the MB model. They studied chaotic logistic maps@1,9–
13# coupled by an external noise

x854 x~12x!1Wh,
~1!

y854 y~12y!1Wh,

where 0<x,y<1; h is a ~common for both subsystems! ran-
dom number chosen uniformly from the interval21 to 11
andW.0 is the strength of the noise. The values ofh vio-
lating the bounds 0<x8,y8<1 is discarded and a newh is
259 © 1997 The American Physical Society
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chosen. Though this model does not show synchroniza
@7# it provides a simple example of the noise induced c
pling between the initially uncorrelated systems (W50). A
straightforward generalization of the process~1! allows one
to study the coalescence process in a more detailed wa
order to introduce the generalized model let us note that c
otic maps have iterations that are composed of two parts,
which stretches the distance between the points and ano
where the distance is enlarged. Consider the distance f
tion dl between images ofx andy for process~1!

dl :S{~x,y!→4ux2yuu12~x1y!u, ~2!

whereS5@0,1#3@0,1#. Then the distance contracting are
V1, of map ~1! is given by the condition: $(x,y):
3/4,x1y,5/4%ùS. That is, ; (x,y)PV1: dl(x,y)
,ux2yu. Clearly, for points inS but outsideV1 the distance
between the points is either enlarged or left unchanged.

Let us now introduce such a generalization of the rand
chaotic map~1! that allows us tocontrol the values of
dl(x,y). For that purpose let the states (x,y) be restricted to
an area Ve , S, given by the inequality 12e/4
<x1y<11e/4. In particular,V45S. Suppose the evolu
tion proceeds, as previously, according to Eq.~1!, but with
(x8,y8)PVe . This condition is realized in practice by a
appropriate choice of the noise term. Namely, againh is a
~common for both subsystems! random number chosen un
formly from the interval21 to 11. In order to guarantee
that the noise transfers all points fromS to Ve we require
thatW. 1

2(12e/4).
The values ofh yielding (x8,y8) from outsideVe are

discarded and a newh is chosen. That is, the noise ter
‘‘shuts’’ the points 0<4x(12x),4y(12y)<1 ~obtained
from the previous iteration! into Ve . We shall call this pro-
cess W2Ve . Clearly, for the whole proces
dl(x,y)<eux2yu and for e54 we recover the model pro
posed by MB. One of the interesting features of the gene
ized model is that fore<1 „W. 1

2(12e/4)… it always con-
tracts the distance between the points so it certainly yield
collapse of the trajectories. Actually, as we demonstrate,
collapse takes place for a much larger set of parameters
example, whenW>1 the collapse is observed fo
e&2.717. The regionse"2.717 areseparated by a parame
ric second order phase transition, where the average co
cence time as function of precision changes from algebrai
exponential dependency. The averaged distance,dl. plays
the role of anorder parameter.

FIG. 1. Lyapunov exponents as functions ofW for theW2Ve

process.
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A study of the phenomena of synchronization is simp
fied if we note that theW2Ve processes can be written in a
equivalent form as

x85XM~ x̃ , ỹ !1hW̃~ x̃ , ỹ ,W!,

y85YM~ x̃ , ỹ !1hW̃~ x̃ , ỹ ,W!, ~3!

x̃54x~12x!, ỹ54y~12y!.

Hereh is an independent random variable, extractedat each
time stepwith uniform distribution on the interval@21,1#
~and without constrains!. The functionsXM , YM , and W̃
read„W. 1

2(12e/4)…

XM5
T1B

2
, YM5XM1 ỹ2 x̃ , W̃5

T2B

2
~4!

where

T5minH 1,12~ ỹ2 x̃ !,
1

2F11
e

4
2~ ỹ2 x̃ !G , x̃1WJ ~5!

B5maxH 0,2~ ỹ2 x̃ !,
1

2F12
e

4
2~ ỹ2 x̃ !G , x̃2WJ . ~6!

The largest Lyapunov exponent^ l & for process~3! is
found in a standard way by calculating the JacobianJi at a
time i and by using the relation

^ l &5 lim
K→`

1

K
lnuJKJK21•••J2J1v̂0u

5 lim
K→`

1

K
~ lnuvKu1 lnuvK21u1•••1 lnuv1u!, ~7!

where v̂0 is an arbitrary two-dimensional vector of un
length (uv̂0u51) and where

uvi11u5uJ i11vî u vî5
vi

uvi u
. ~8!

Results are shown in Figs. 1 and 2. Note that for
W2Ve process there is no correlation between the chang
sign of ^ l & and the collapse. Consider, for example, two sp
cial cases:~a! the original MB process withe54 and
0<W<1 and ~b! theW2Ve process withW51. For the
MB process the collapse does not take place@7# but, none-
theless,̂ l & changes sign as a function ofW. On the other

FIG. 2. Lyapunov exponents as functions ofe for theW2Ve

process with fixedW.
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FIG. 3. Pair distribution function for theW2V4 process and for various parametersW: ~a! W50.01, ~b! W50.1, ~c! W50.4, ~d!
W50.7, and~e! W51.
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hand, for theW2Ve process the largest Lyapunov expone
is always negative although collapse takes place only
e'2.717.For e.2.717the collapse does not occur in spi
of fact that the Lyapunov exponent is negative.

In order to identify relevant factors responsible for t
value of the maximal Lyapunov exponent, we have cal
lated ^ l & for cases~a! and ~b! by a direct diagonalization o
the productJKJK21•••J2J1. For these particular cases th
diagonalization can be done exactly, yielding

^ l &5 lim
K→`

1

KH (
n51

K

lnu428yn14~yn2xn!@ T̃n211B̃n21

1hn21~ T̃n212B̃n21!#uJ , ~9!
t
r

-

where

T̃m5Q~ ỹm2 x̃m!QS e4211 ỹm2 x̃mD
1
1

2
QS 12

e

4
1 ỹm2 x̃mDQS 12

e

4
2 ỹm1 x̃mD ,

~10!

B̃m5Q~ x̃m2 ỹm!QS e4212 ỹm1 x̃mD
1
1

2
QS 12

e

4
2 ỹm1 x̃mDQS 12

e

4
1 ỹm2 x̃mD ~11!
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and whereQ is the u Heaviside. AdditionallyT̃0[ T̃K and
B̃0[B̃K . Note that Eq.~9! depends only on the properties
the pair distribution functionP(x,y). This follows from the
observation thatx̃ n and ỹ n can be expressed in terms
x̃ n21, ỹ n21, andhn21. Furthermore, the averaging over th
independent uniformly distributed random numbershn21
can be done separately. ForW51 and for e54 the final
formulas becomes particularly simple. It reads

^ l &5 ln~4!211 lim
K→`

1

K(
n51

K

lnu128uxn2ynuu12xn2ynuu,

~12!

5 ln~4!211E
0

1E
0

1

dxdyP~x,y!

3 lnu128ux2yuu12x2yuu. ~13!

From Eq.~13! it becomes clear that the sign of the max
mal Lyapunov exponent for the MB process depends on
tails ofpair correlationsandeven for trajectories that do no
collapse it can be negative. To see this explicitely we
sketched in Fig. 3 the evolution of the pair correlation fun
tion P(x,y) with increasingW. This function fulfills a sto-
chastic Frebonius-Peron integral equation, similar to t
given in @8#, and can easily be generated numerically. N
that theW2V4 process for smallW’s is practically equiva-
lent to the dynamics of the two decoupled logistic ma
Also, the corresponding Lyapunov exponent is similar to t
known for the logistic map. With increasingW the noise

FIG. 4. The distribution functionP(N) thatN digits of x and
y are identical (N5u ln10(ux2yu)u). Calculations are carried out fo
theW2V4 process withW51.

FIG. 5. The distance function̂dl&[^ux2yu& for the W2V4

process.
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correlates subsystems. These correlations are already
for W50.1 in the form of a shallow local maximum alon
the x5y line and become fully developed forW>0.4.
Hence, the noise term correlates subsystems and the sig
^ l & is determined by details ofP(x,y). Neither very strong
correlations@P(x,y)5d(x2y), whered is the Dirac func-
tion# nor lack of correlations@P(x,y)5P(x)P(y)# would
yield negative values of̂l &. The fine structure of the pai
correlations, giving a probability distribution that the tw
trajectories haveN common digits, is shown in Fig. 4. We
clearly see that forW51 no collapse occurs.

From the analysis above it seems that Lyapunov ex
nents do not provide the most general characterization of
collapse processes and some other quantities should
looked for. The most natural and almost trivial one is t
distance function

^dl&5 lim
K→`

1

K(
n51

K

A(
a

~xa,n2ya,n!
2, ~14!

wherexa andya are the components of a multidimension
vectorsx andy describing a chaotic, random process. For
W2Ve processes this function has been shown in Figs
and 6. Note that thêdl& serves, in this case, as an ord
parameter, i.e., it vanishes for infinite times in the collap
area and is nonzero otherwise. For theW2Ve process
(W51) we observe a second order phase transition
e5ec (ec'2.717) from a noncollapsing regime (e.ec) to a
collapsing one (e,ec). Close to the phase transitio
^ux2yu& '(e2ec)

b, whereb is a critical exponent. The
estimates giveb5160.25. Both,ec andb are very hard to
get. They were found with the help of a program runni
under control of theMAPLE package. Averages were pe
formed over 106 time steps with an adaptive precisio
scheme which guaranteed that statistically no collapse t
place within the first 106 time steps. Close toec a relative
precision of 1536 digits was necessary to fulfill this con
tion. But still the data are characterized by a large sca
making direct estimates ofb extremely difficult.
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FIG. 6. The distance function̂dl&[^ux2yu& for the W2Ve

process withW51. It shows a parametric phase transition f
e'2.717.
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